如图,有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的图形,小明将这四张纸牌背面朝上洗匀后随机摸出一张,放回后洗匀再随机摸出一张.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A、B、C、D表示);
(2)求两次摸出的牌面图形既是中心对称图形又是轴对称图形的概率.
为了解某市今年九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分组(A:40分;B:39-37分;C:36-34分;D:33-28分;E:27-0分)统计如下:
根据上面提供的信息,回答下列问题:
(1)这次调查中,抽取的学生人数为多少?并将条形统计图补充完整;
(2)如果把成绩在34分以上(含34分)定为优秀,估计该市今年9000名九年级学生中,体育成绩为优秀的学生人数有多少人?
化简并求值:,其中
.
(本小题7分)一个不透明的口袋里装有分别标有汉字“灵”、“秀”、“黄”、“冈”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.
(1)若从中任取一个球,球上的汉字刚好是“黄”的概率为多少?
(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”(汉字不分先后顺序)的概率P1;
(3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成“灵秀”或“黄冈”(汉字不分先后顺序)的概率为P2,请直接写出P2的值,并比较P1,P2的大小.(2+3+2=7)
(本小题7分)如图,一次函数的图象与x轴交于点B,与反比例函数
的图象的一个交点为A(2,m).
(1)求反比例函数的表达式;
(2)求当x满足什么范围时,<
;
(3)过点A作AC⊥x轴,垂足为点C,如果求点P在反比例函数图象上,且△PBC的面积等于6,请直接写出点P的坐标.