我们规定:函数(a、b、k是常数,k≠ab)叫奇特函数.当a=b=0时,奇特函数
就是反比例函数
(k是常数,k≠0).
(1)如果某一矩形两边长分别是2和3,当它们分别增加x和y后,得到新矩形的面积为8.求y与x之间的函数表达式,并判断它是否为奇特函数;
(2)如图,在平面直角坐标系xOy中,矩形OABC的顶点A、C坐标分别为(6,0)、(0,3),点D是OA中点,连接OB、CD交于E,若奇特函数的图象经过点B、E,求该奇特函数的表达式;
(3)把反比例函数的图象向右平移4个单位,再向上平移 个单位就可得到(2)中得到的奇特函数的图象;
(4)在(2)的条件下,过线段BE中点M的一条直线l与这个奇特函数图象交于P,Q两点(P在Q右侧),如果以B、E、P、Q为顶点组成的四边形面积为16,请直接写出点P的坐标.
如图,在平面直角坐标系中,Rt△PBD的斜边PB落在y轴上,
tan∠BPD=.延长BD交
轴于点C,过点D作DA⊥
轴,垂足为A,PD与
轴交于点E,OA=8,OB=6.
(1)求点C的坐标;
(2)若点D在反比例函数y =(k>0)的图象上,求反比例函数的解析式.
某海域有A、B、C三艘船正在捕鱼作业,C船突然出现故障,向A、B两船发出紧急求救信号,此时B船位于A船的北偏西47°方向,距A船26海里的海域,C船位于A船的北偏东58°方向,同时又位于B船的北偏东88°方向.
(1)求∠ABC的度数;
(2)A船以每小时40海里的速度前去救援,问多长时间能到出事地点.(结果精确到0.01小时).
(参考数据:≈1.414,
≈1.732)
某教研部门为了了解在校初中生阅读教科书的现状,随机抽取某校部分初中学生进行了调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:
某校初中生阅读教科书情况统计图表
类别 |
人数 |
占总人数比例 |
重视 |
a |
b |
一般 |
57 |
0.285 |
不重视 |
c |
0.36 |
说不清楚 |
9 |
0.045 |
(1)求样本容量及表格中a,b,c的值,并补全统计图;
(2)若该校共有初中生2500名,请估计该校“重视阅读教科书”的初中人数;
(3)①根据上面的统计结果,谈谈你对该校初中生阅读教科书的现状的看法及建议;
②如果要了解全省初中生阅读教科书的情况,你认为应该如何进行抽样?
(1)计算:(6.28-2π)0+(-)-2-2cos60°;
(2)解方程:=
在直角坐标系中,已知点P是反比例函数
(
>0)图象上一个动点,以P为圆心的圆始终与
轴相切,设切点为A.
(1)如图1,⊙P运动到与轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.
(2)如图2,⊙P运动到与轴相交,设交点为B,C.当四边形ABCP是菱形时:
①求出点A,B,C的坐标.
②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的.若存在,试求出所有满足条件的M点的坐标,若不存在,试说明理由.