【提出问题】
(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.
【类比探究】
(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.
【拓展延伸】
(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.
已知关于的方程
有实根.
(1)求的值;
(2)若关于的方程
的所有根均为整数,求整数
的值.
以坐标原点为圆心,1为半径的圆分别交x,y轴的正半轴于点A,B.
(1)如图,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆
周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,经过1秒后点P运动到点(2,0),
此时PQ恰好是的切线,连接OQ. 求
的大小;
(2)若点Q按照(1)中的方向和速度继续运动,点P停留在点(2,0)处不动,求点Q再经过5秒后直
线PQ被截得的弦长.
如图,AB是的直径,AC是弦,直线EF和
相切与点C,
,垂足为D.
(1)求证;
(2)如图,若把直线EF向上移动,使得EF与相交于G,C两点(点C在点G的右侧),连结
AC,AG,若题中其他条件不变,这时图中是否存在与相等的角?若存在,找出一个这样
的角,并证明;若不存在,说明理由.
一个袋中有3张形状大小完全相同的卡片,编号为1,2,3,先任取一张,将其编号记为m,再从剩下的
两张中任取一张,将其编号记为n.
(1)请用树状图或者列表法,表示事件发生的所有可能情况;
(2)求关于x的方程有两个不相等实数根的概率.
如图,为正方形
对角线AC上一点,以
为圆心,
长为半径的⊙
与
相切于点
.
(1)求证:与⊙
相切;
(2)若⊙的半径为1,求正方形
的边长.