学校计划用地面砖铺设教学楼前矩形广场的地面ABCD已知矩形广场地面的长为100米,宽为80米.图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,阴影部分铺绿色地面砖,其余部分铺白色地面砖.
(1)要使铺白色地面砖的面积为5200平方米,则矩形广场四角的小正方形的边长为多少米?
(2)如果铺白色地面砖的费用为每平方米30元,铺绿色地面砖的费用为每平方米20元.当广场四角小正方形的边长为多少米时,铺广场地面的总费用最少?最少费用是多少?
如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合)。连接DP交对角线AC于E,连接BE。
(1) 证明:∠APD=∠CBE;
(2) 若∠DAB=60º,试问P点运动到什么位置时,△ADP的面积等于菱形ABCD面积的?
请说明理由。
如图,AC是某市环城路的一段,AE,BF,CD都是南北方向的街道,其与环城路AC的交叉路口分别是A,B,C.经测量花卉世界D位于点A的北偏东45°方向、
点B的北偏东30°方向上,AB=2km,∠DAC=15°。
(1)求B,D之间的距离;
(2)求C,D之间的距离
已知:如图,P是⊙O直径AB延长线上一点,过P的直线交⊙O于C、D两点,弦DF⊥AB于点H,CF交AB于点E。
⑴ 求证:PC·PD=PO·PE;
⑵ 若DE⊥CF,∠P=150,⊙O的半径为2,求弦CF的长
已知:如图,点A(m,3)与点B(n,2)关于直线y = x对称,且都在反比例函数的图象上,点D的坐标为(0,-2)。
(1)求反比例函数的解析式;
(2)若过B、D的直线与x轴交于点C,求sin∠DCO的值
某商场购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个。
(1)假设销售单价提高x元,那么销售300个篮球所获得的利润是____________元;这种篮球每月的销售量是___________________个。(用含x的代数式表示)
(2)8000元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请求出最大利润,此时篮球的售价应定为多少元?