(本小题满分14分)如图,在四棱柱中,
底面
,
,
,且
,点E在棱AB上,平面
与棱
相交于点F.
(Ⅰ)证明:∥平面
;
(Ⅱ)若E是棱AB的中点,求二面角的余弦值;
(Ⅲ)求三棱锥的体积的最大值.
(本小题满分13分)设数列是有穷等差数列,给出下面数表:
……
第1行
……
第2行
… … …
……
… 第行
上表共有行,其中第1行的
个数为
,从第二行起,每行中的每一个数都等于它肩上两数之和.记表中各行的数的平均数(按自上而下的顺序)分别为
.
(1)求证:数列成等比数列;
(2)若,求和
.
(本小题满分13分)已知
是函数
的极值点.
(1)当时,讨论函数
的单调性;
(2)当R时,函数
有两个零点,求实数m的取值范围.
(本小题满分12分)某地有三个村庄,分别位于等腰直角三角形ABC的三个顶点处,已知AB=AC=6km,现计划在BC边的高AO上一点P处建造一个变电站.记P到三个村庄的距离之和为y.
(1)设,求y
关于
的函数关系式;
(2)变电站建于何处时,它到三个小区的距离之和最小?
(本小题满分12分)在△ABC中,设角A,B,C的对边分别为a,b,c,若,
(1)求角A,B,C的大小;
(2)若BC边上的中线AM的长为,求△ABC的面积.
(本小题满分12分)已知A,B,C三点的坐标分别为,
,
,其中
.
(1)若,求角
的值;
(2)若,求
的值.