(本小题满分13分)最近,张师傅和李师傅要将家中闲置资金进行投资理财. 现有两种投资方案,且一年后投资盈亏的情况如下:
(1)投资股市:
投资结果 |
获利 |
不赔不赚 |
亏损 |
概 率 |
![]() |
![]() |
![]() |
(2)购买基金:
投资结果 |
获利 |
不赔不赚 |
亏损 |
概 率 |
![]() |
![]() |
![]() |
(Ⅰ)当时,求q的值;
(Ⅱ)已知“购买基金”亏损的概率比“投资股市”亏损的概率小,求的取值范围;
(Ⅲ)已知张师傅和李师傅两人都选择了“购买基金”来进行投资,假设三种投资结果出现的可能性相同,求一年后他们两人中至少有一人获利的概率.
已知函数(其中
为正常数,
)的最小正周期为
.
(1)求的值;
(2)在△中,若
,且
,求
.
设是公比
大于1的等比数列,
为数列
的前
项和,已知
,且
构成等差数列.
(1)求数列的通项公式;
(2)令,求数列
的前
项和
.
(本题满分12分)
已知函数是实数集R上的奇函数,且
在R上为增函数。
(Ⅰ)求的值;
(Ⅱ)求在
恒成立时的实数t的取值范围。
(本题满分12分)
已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆右顶点到直线的距离为
,离心率
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知A为椭圆与y轴负半轴的交点,设直线:
,是否存在实数m,使直线
与(Ⅰ)中的椭圆有两个不同的交点M、N,是∣AM∣=∣AN∣,若存在,求出 m的值;若不存在,请说明理由。
(本题满分12分)
已知数列的前 n项和为
,满足
,且
.
(Ⅰ)求,
;
(Ⅱ)若,求证:数列
是等比数列。
(Ⅲ)若, 求数列
的前n项和
。