(本小题满分14分)
已知数列的前
项和
,且
.
(1)求数列的通项公式;
(2)令,是否存在
,使得
、
、
成等比数列.若存在,求出所有符合条件的
值;若不存在,请说明理由.
(本题满分12分.)
数列中{an},a1=8,a4=2,且满足an+2= 2an+1- an,
(1)求数列{an}的通项公式;
(2)设Sn=,求Sn
(本题满分12分.)直线y=kx+b与椭圆交于A,B两点,记三角形ABO的面积为S
(1)求在k="0," 的条件下,S的最大值
(2)当,S=1时,求直线AB的方程
(本题满分12分.)在锐角三角形中,边a,b是方程的两根,
角A,B满足,求角C的度数,边c的长度及三角形ABO的面积
已知椭圆的长轴,短轴端点分别是A,B,从椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量
与
是共线向量
(1)求椭圆的离心率
(2)设Q是椭圆上任意一点,分别是左右焦点,求
的取值范围
已知,解关于x的不等式