选修4-4:坐标系与参数方程[(本小题满分10分)
己知直线 的参数方程为
(t为参数),圆C的参数方程为
.(a>0.
为参数),点P是圆C上的任意一点,若点P到直线
的距离的最大值为
,求a的值。
已知圆C:,直线l:
(m∈R).(Ⅰ)证明:不论m取什么实数,直线l与圆恒交于两点.
(Ⅱ)求直线被圆C截得的弦长最小时l的方程.
为了绿化城市,准备在如图所示的区域内修建一个矩形PQRC的草坪,且PQ∥BC,RQ⊥BC,另外△AEF的内部有一文物保护区不能占用,经测量 AB=100m,BC=80m,AE=30m,AF=20m.
(1)求直线EF的方程.
(2)应如何设计才能使草坪的占地面积最大?
正方体ABCD—A1B1C1D1的棱长为
⑴求△AB1D1的面积;⑵求三棱锥的体积。
如图,四边形ABCD是矩形,面ABCD,过BC作平面BCFE交AP于E,
交DP于F,求证:四边形BCFE是梯形
已知在正方体中,E、F分别是
的中点,
求证:平面平面