已知:如图,AB是⊙O的直径,CD是⊙O的弦,且AB⊥CD,垂足为E.
(1)求证:∠CDB=∠A;
(2)若BD=5,AD=12,求CD的长.
如图,在平面直角坐标系 中,抛物线 与 轴交于 , 两点(点 在点 的左侧),与 轴交于点 ,顶点为 ,对称轴与 轴交于点 ,过点 的直线 交抛物线于 , 两点,点 在 轴的右侧.
(1)求 的值及点 , 的坐标;
(2)当直线 将四边形 分为面积比为 的两部分时,求直线 的函数表达式;
(3)当点 位于第二象限时,设 的中点为 ,点 在抛物线上,则以 为对角线的四边形 能否为菱形?若能,求出点 的坐标;若不能,请说明理由.
如图①, 中, , 于点 ,点 在 上,且 ,连接 .
(1)求证: ;
(2)将 绕点 旋转,得到 (点 , 分别与点 , 对应),连接 .
①如图②,当点 落在 上时, 不与 重合),若 , ,求 的长;
②如图③,当 是由 绕点 逆时针旋转 得到时,设射线 与 相交于点 ,连接 ,试探究线段 与 之间满足的等量关系,并说明理由.
某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了 棵橙子树.
(1)直接写出平均每棵树结的橙子个数 (个 与 之间的关系;
(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?
如图,在 中, ,以 为半径作 ,交 于点 ,交 的延长线于点 ,连接 , .
(1)求证: ;
(2)当 时,求 ;
(3)在(2)的条件下,作 的平分线,与 交于点 ,若 ,求 的半径.
如图,在平面直角坐标 中,正比例函数 的图象与反比例函数 的图象都经过点 .
(1)分别求这两个函数的表达式;
(2)将直线 向上平移3个单位长度后与 轴交于点 ,与反比例函数图象在第四象限内的交点为 ,连接 , ,求点 的坐标及 的面积.