如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.
(1)填空:点A坐标为 ,抛物线的解析式为 ;
(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.连接PQ,是否存在实数t,使得PQ所在的直线经过点D,若存在,求出t的值;若不存在,请说明理由;
(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?
如图,以 的 边上一点 为圆心,经过 , 两点且与 边交于点 ,点 为 的下半圆弧的中点,连接 交线段 于点 ,若 .
(1)求证: 是 的切线;
(2)若 , ,求 的半径 及 .
在数学活动课上,老师要求学生在 的正方形 网格中(小正方形的边长为 画直角三角形,要求三个顶点都在格点上,而且三边与 或 都不平行.画四种图形,并直接写出其周长(所画图象相似的只算一种).
如图,某城市市民广场一入口处有五级高度相等的小台阶.已知台阶总高1.5米,为了安全,现要做一个不锈钢扶手 及两根与 垂直且长为1米的不锈钢架杆 和 (杆子的底端分别为 、 ,且 .(参考数据: ,
(1)求点 与点 的高度差 ;
(2)求所有不锈钢材料的总长度(即 的长,结果精确到0.1米)
某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车规定满载,并且只装一种水果).如表为装运甲、乙、丙三种水果的重量及利润.
甲 |
乙 |
丙 |
|
每辆汽车能装的数量(吨 |
4 |
2 |
3 |
每吨水果可获利润(千元) |
5 |
7 |
4 |
(1)用8辆汽车装运乙、丙两种水果共22吨到 地销售,问装运乙、丙两种水果的汽车各多少辆?
(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到 地销售(每种水果不少于一车),假设装运甲水果的汽车为 辆,则装运乙、丙两种水果的汽车各多少辆?(结果用 表示)
(3)在(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?
某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.
(1)初三(1)班接受调查的同学共有多少名;
(2)补全条形统计图,并计算扇形统计图中的“体育活动 ”所对应的圆心角度数;
(3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生;老师想从5名同学中任选两名同学进行交流,直接写出选取的两名同学都是女生的概率.