(本小题满分14分)已知函数(),且.(1)求α的值;(2)求函数的零点;(3)判断在(-∞,0)上的单调性,并给予证明.
已知,函数. (I)证明:函数在上单调递增; (Ⅱ)求函数的零点.
已知圆C和轴相切,圆心C在直线上,且被直线截得的弦长为,求圆C的方程.
在长方体中,截下一个棱锥,求棱锥的体积与剩余部分的体积之比.
已知直线经过点,且斜率为. (I)求直线的方程; (Ⅱ)若直线与平行,且点P到直线的距离为3,求直线的方程.
某商场经营一批进价是30元/件的商品,在市场试销中发现,此商品销售价元与日销售量件之间有如下关系:
(I)确定与的一个一次函数关系式; (Ⅱ)若日销售利润为P元,根据(I)中关系写出P关于的函数关系,并指出当销售单价为多少元时,才能获得最大的日销售利润?
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号