设{an}是公比为 q的等比数列,且a1,a3,a2成等差数列.
(Ⅰ)求q的值;
(Ⅱ)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.
在中角A、B、C所对的边分别为a、b、c,面积为S.已知
(Ⅰ)求;
(Ⅱ)若,求S的最大值.
一个盒子里装有三张卡片,分别标记有数字,
,
,这三张卡片除标记的数字外完全相同。随机有放回地抽取
次,每次抽取
张,将抽取的卡片上的数字依次记为
,
,
.
(Ⅰ)求“抽取的卡片上的数字满足”的概率;
(Ⅱ)求“抽取的卡片上的数字,
,
不完全相同”的概率.
已知函数f(x)= sinx×cosx-cos2x+
.
(Ⅰ)化简函数f(x),并用“五点法”画出函数在长度为一个周期的闭区间上的简图(先在所给的表格中填上所需的数值,再画图);
(Ⅱ)当时,求函数
的最大值和最小值及相应的
的值.
已知函数,其中
为常数.
(Ⅰ)若函数在区间
上单调,求
的取值范围;
(Ⅱ)若对任意,都有
成立,且函数
的图象经过点
,求
的值。