(本小题满分14分)
如图,四边形是正方形,△
与△
均是以
为直角顶点的等腰直角三角形,点
是
的中点,点
是边
上的任意一点.
(1)求证:;
(2)求二面角的平面角的正弦值.
已知命题p:,
命题q:.
若“p且q”为真命题,求实数m的取值范围.
已知函数的定义域为A,函数
的定义域为B,(1) 若
,求实数
的取值范围;(2)若
,求实数
的取值范围.
已知函数
(I)若为
的极值点,求实数
的值;
(II)若在
上为增函数,求实数
的取值范围;
(Ⅲ)当时,方程
有实根,求实数
的最大值。
为了解某班学生关注NBA是否与性别有关,对本班48人进行了问卷调查得到如下的列联表:
关注NBA |
不关注NBA |
合计 |
|
男生 |
6 |
||
女生 |
10 |
||
合计 |
48 |
已知在全班48人中随机抽取1人,抽到关注NBA的学生的概率为2/3
⑴请将上面列连表补充完整,并判断是否有的把握认为关注NBA与性别有关?
⑵现从女生中抽取2人进一步调查,设其中关注NBA的女生人数为X,求X的分布列与数学期望。
附:,其中
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
函数,其中
为常数,且函数
和
的图象在其与坐标轴的交点处的切线互相平行,求此时平行线的距离。