(本题满分14分)本题共2小题,第(1)小题8分,第(2)小题6分.
如图,摩天轮上一点在
时刻距离地面高度满足
,
,已知某摩天轮的半径为
米,点
距地面的高度为
米,摩天轮做匀速转动,每
分钟转一圈,点
的起始位置在摩天轮的最低点处.
(1)根据条件写出(米)关于
(分钟)的解析式;
(2)在摩天轮转动的一圈内,有多长时间点距离地面超过
米?
当室内的有毒细菌开始增加时,就要使用杀菌剂.刚开始使用的时候,细菌数量还会继续增加,随着时间的增加,它增加幅度逐渐变小,到一定时间,细菌数量开始减少.如果使用杀菌剂t小时后的细菌数量为b(t)=105+104t-103t2.
(1)求细菌在t=5与t=10时的瞬时速度;(2)细菌在哪段时间增加,在哪段时间减少?为什么?
已知某工厂生产件产品的成本为
(元),问:(1)要使平均成本最低,应生产多少件产品?(2)若产品以每件500元售出,要使利润最大,应生产多少件产品?
已知函数在
处有极小值
,试求
的值,并求出
的单调区间.
已知,证明不等式
.
在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的东偏南方向300 km的海面P处,并以20 km / h的速度向西偏北
的方向移动,台风侵袭的范围为圆形区域,当前半径为60 km ,并以10 km / h的速度不断增加,问几小时后该城市开始受到台风的侵袭?持续多长时间?