(本题满分14分)本题共2小题,第(1)小题8分,第(2)小题6分.
如图,摩天轮上一点在
时刻距离地面高度满足
,
,已知某摩天轮的半径为
米,点
距地面的高度为
米,摩天轮做匀速转动,每
分钟转一圈,点
的起始位置在摩天轮的最低点处.
(1)根据条件写出(米)关于
(分钟)的解析式;
(2)在摩天轮转动的一圈内,有多长时间点距离地面超过
米?
(本小题满分14分)(注意:在试题卷上作答无效)
已知曲线,从
上的点
作
轴的垂线,交
于点
,再从点
作
轴的垂线,交
于点
,设
(1)求数列的通项公式;
(2)记,数列
的前
项和为
,试比较
与
的大小
;
(3)记,数列
的前
项和为
,试证明:
(本小题14分,计入总分)
已知数列满足:
⑴求;
⑵当时,求
与
的关系式,并求数列
中偶数项的通项公式;
⑶求数列前100项中所有奇数项的和.
(本小题满分13分)已知平面上三个向量的模均为1,它们相互之间的夹角均为
。
(I)求证:;
(II)若,求
的取值范围。
(本小题满分12分)
已知,函数
,
时,
,求常数
,
的值.
(本小题满分12分)
.已知函数是奇函数.
(1)求实数的值;
(2)若函数在区间
上单调递增,求实数
的取值范围.