(本小题满分12分,(1)小问3分,(2)小问4分,(3)小问5分)
对于函数,若存在实数对(
),使得等式
对定义域中的每一个
都成立,则称函数
是“(
)型函数”.
(1)判断函数是否为 “(
)型函数”,并说明理由;
(2)若函数是“(
)型函数”,求出满足条件的一组实数对
;
(3)已知函数是“(
)型函数”,对应的实数对
为(1,4).当
时,
,若当
时,都有
,试求
的取值范围.
(本小题满分10分)
已知cosα=,且-
<α<0,
求的值.
(本小题满分10分)
.设数列的前项n和为
,若对于任意的正整数n都有
.
(1)设,求证:数列
是等比数列,并求出
的通项公式。
(2)求数列的前n项和.
(文)已知在
处有极值,其图象在
处的切线与直线
平行.
(1)求函数的单调区间;
(2)若时,
恒成立,求实数
的取值范围。
(理)如图,P—ABCD是正四棱锥,是正方体,其中
(1)求证:;
(2)求平面PAD与平面所成的锐二面角
的余弦值;
某车间生产某机器的两种配件A和B,生产配件A成本费y与该车间的工人人数x成反比,而生产配件B成本费y
与该车间的工人人数x成正比,如果该车间的工人人数为10人时,这两项费用y
和y
分别为2万元和8万元,那么要使这两项费用之和最小,该车间的工人人数x应为多少?