某商场以每件280元的价格购进一批商品,当每件商品的售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.设每件商品的实际售价比原销售价降低了x元.
(1)填表:
(2)要使商场每月销售该商品的利润达到7200元,且更有利于减少库存,则该商品每件实际售价应定为多少元?
阅读以下材料:
对数的创始人是苏格兰数学家纳皮尔 . , 年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉 , 年)才发现指数与对数之间的联系.
对数的定义:一般地,若 ,那么 叫做以 为底 的对数,记作: .比如指数式 可以转化为 ,对数式 可以转化为 .
我们根据对数的定义可得到对数的一个性质: , , , ;理由如下:
设 , ,则 ,
,由对数的定义得
又
解决以下问题:
(1)将指数 转化为对数式 ;
(2)证明 , , ,
(3)拓展运用:计算 .
如图,在 中, .
(1)作出经过点 ,圆心 在斜边 上且与边 相切于点 的 (要求:用尺规作图,保留作图痕迹,不写作法和证明)
(2)设(1)中所作的 与边 交于异于点 的另外一点 ,若 的直径为5, ;求 的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)
如图,在 中, , , ;求 和 的长.
某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共调查了 名学生;
(2)补全条形统计图;
(3)若该校共有1500名学生,估计爱好运动的学生有 人;
(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是 .
已知:如图,抛物线 与坐标轴分别交于点 , , ,点 是线段 上方抛物线上的一个动点.
(1)求抛物线的解析式;
(2)当点 运动到什么位置时, 的面积有最大值?
(3)过点 作 轴的垂线,交线段 于点 ,再过点 做 轴交抛物线于点 ,连接 ,请问是否存在点 使 为等腰直角三角形?若存在,求出点 的坐标;若不存在,说明理由.