选修4-1:几何证明选讲
如图,是
的一条切线,切点为
,直线
,
,
都是
的割线,已知
.
(1)求证:;
(2)若,
.求
的值.
已知函数,其中e为自然对数的底数,a为常数.
(1)若对函数存在极小值,且极小值为0,求a的值;
(2)若对任意,不等式
恒成立,求a的取值范围.
椭圆过点
,离心率为
,左、右焦点分别为
,过
的直线交椭圆于
两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)当的面积为
时,求直线的方程.
如图,在直三棱柱中,平面
侧面
且
.
(Ⅰ)求证:;
(Ⅱ)若直线AC与平面所成的角为
,求锐二面角
的大小.
生产,
两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:
测试指标 |
![]() |
![]() |
![]() |
![]() |
![]() |
元件![]() |
8 |
12 |
40 |
32 |
8 |
元件![]() |
7 |
18 |
40 |
29 |
6 |
(Ⅰ)试分别估计元件、元件
为正品的概率;
(Ⅱ)生产一件元件,若是正品可盈利50元,若是次品则亏损10元;生产一件元件
,若是正品可盈利100元,若是次品则亏损20元,在(Ⅰ)的前提下
(i)求生产5件元件所获得的利润不少于300元的概率;
(ii)记为生产1件元件
和1件元件
所得的总利润,求随机变量
的分布列和期望.