(本小题满分12分)在四棱锥,平面ABCD,PA=2.(I)设平面平面,求证:;(II)设点Q为线段PB上一点,且直线QC与平面PAC所成角的正切值为,求的值.
已知过原点的一条直线与函数的图象交于,两点,分别过点,作轴的平行线与函数的图象交于,两点. (1)求证:点,和原点在同一条直线上; (2)当平行于轴时,求点的坐标.
若函数在及之间的一段图象可以近似地看作直线, 且,求证.
已知的顶点,边上的中线所在直线方程为,边上的高所在直线方程为.求 (1)顶点的坐标; (2)直线的方程.
当为何值时,直线在两坐标轴上的截距相等.
光线自点射出,经轴反射以后经过点, 求光线自点到所经过的路程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号