某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2 5元。老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕,两批文具的售价均为每件15元。
(1)问第二次购进了多少件文具?
(2)文具店老板第一次购进的文具有3% 的损耗,第二次购进的文具有5% 的损耗,问文具店老板在这两笔生意中是盈利还是亏本?请说明理由。
已知O为坐标原点,抛物线与
轴相交于点
,
.与
轴交于点C,且O,C两点之间的距离为3,
,
,点A,C在直线
上.
(1)求点C的坐标;
(2)当随着
的增大而增大时,求自变量
的取值范围;
(3)将抛物线向左平移
个单位,记平移后
随着
的增大而增大的部分为P,直线
向下平移n个单位,当平移后的直线与P有公共点时,求
的最小值.
如图,过原点的直线和
与反比例函数
的图象分别交于两点A,C和B,D,连结AB,BC,CD,DA.
(1)四边形ABCD一定是 四边形;(直接填写结果)
(2)四边形ABCD可能是矩形吗?若可能,试求此时和
之间的关系式;若不可能,说明理由;
(3)设P(,
),Q(
,
)(
)是函数
图象上的任意两点,
,
,试判断
,
的大小关系,并说明理由.
如图1,关于的二次函数y=-
+bx+c经过点A(-3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上。
(1)求抛物线的解析式;
(2)DE上是否存在点P到AD的距离与到轴的距离相等,若存在求出点P,若不存在请说明理由;
(3)如图2,DE的左侧抛物线上是否存在点F,使2=3
,若存在求出点F的坐标,若不存在请说明理由。
如题25图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm.
(1)填空:AD= (cm),DC= (cm);
(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B的方向运动,当N点运动 到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);
(3)在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出这个最大值.
(参考数据:sin75°=,sin15°=
)
如图,在水平地面上竖立着一面墙AB,墙外有一盏路灯D.光线DC恰好通过墙的最高点B,且与地面形成37°角.墙在灯光下的影子为线段AC,并测得AC=5.5米.
(1)求墙AB的高度(结果精确到0.1米);(参考数据:tan37°≈0.75,sin37°≈0.60,cos37°≈0.80)
(2)如果要缩短影子AC的长度,同时不能改变墙的高度和位置,请你写出两种不同的方法.