某学校科技兴趣小组,利用废旧物品制作了一个简易气温计:在一个空葡萄酒瓶中插入一根两端开口的玻璃管,玻璃管内有一段长度可忽略的水银柱,接口处用蜡密封,将酒瓶水平放置,如图所示。已知该装置密封气体的体积为480cm3,玻璃管内部横截面积为0. 4 cm2,玻璃管在瓶口外的有效长度为48 cm。当气温为7℃时,水银柱刚好处在瓶口位置。
(1)求该气温计能测量的最高气温。
(2)假设水银柱从瓶口处缓慢移动到最右端的过程中,密封气体从外界吸收3J热量,则在这一过程中该气体的内能如何变化?变化了多少?(已知大气压为1 × 105 Pa)
如图,质量m为5kg的物块(看作质点)在外力F1和F2的作用下正沿某一水平面向右做匀速直线运动。已知F1大小为50N,方向斜向右上方,与水平面夹角,F2大小为30N,方向水平向左,物块的速度
大小为11m/s.当物体运动到距初始位置距离
时,撤掉F1,
(1)求物块与水平地面之间的动摩擦因数;
(2)求撤掉F1以后,物块在6S末距初始位置的距离。
如图所示,竖直平面内有一直角坐标系,在y轴的右侧存在无限大的、场强大小为E、水平向左的匀强电场,在y轴的左侧同时存在一个垂直纸面向外、磁感应强度大小为B、水平宽度为a的匀强磁场Ⅰ.有一不计重力、带正电、比荷为的粒子由+x轴上某一位置无初速度释放.
(1)若其恰好经过磁场Ⅰ左边界上P点,求粒子射出磁场Ⅰ的速度v1的大小;
(2)若其恰好经过y轴上的Q点,求粒子从释放开始第一次到达Q所用的时间;
(3)若匀强磁场Ⅰ左侧同时存在一个垂直纸面向里、磁感应强度大小也为B的无限大匀强磁场Ⅱ,要使粒子第二次沿+x方向运动时恰经过y轴上的M点,试求其在+x轴上无初速度释放时的位置坐标.
如图所示,一个长度为L=1m、高度为h=0.8m的长木板静止在水平地面上,其质量M=0.4kg,一质量m=0.1kg的小物块(可视为质点)放置在其上表面的最右端.物块与长木板,长木板与地面之间动摩擦因数均为μ=0.5.设最大静摩擦力等于滑动摩擦力.现给长木板施加一个水平向右持续作用的外力F.
(1)若F恒为4 N,试求长木板的加速度大小;
(2)若F恒为5.8 N,试判断物块是否能从长木板上掉下,如能,请求出小物块落地时距长木板左端的距离;如不能,求出物块距长木板右端的距离;
(3)若F=kt,k>0,在t=0时刻到物块刚滑落时间内,试定性画出物块与长木板间摩擦力大小随时间变化的图线,无需标注时间以及力的大小.
如图所示,宽度为L的足够长的平行金属导轨固定在绝缘水平面上,导轨的两端连接阻值R的电阻.导轨所在空间存在竖直向下的匀强磁场,磁感应强度为B,一根质量m的导体棒MN放在导轨上与导轨接触良好,导体棒的有效电阻也为R,导体棒与导轨间的动摩擦因数为,设最大静摩擦力等于滑动摩擦力.导体棒MN的初始位置与导轨最左端距离为L,导轨的电阻可忽略不计.
(1)若用一平行于导轨的恒定拉力F拉动导体棒沿导轨向右运动,在运动过程中保持导体棒与导轨垂直,求导体棒最终的速度;
(2)若导体棒的初速度为,导体棒向右运动L停止,求此过程导体棒中产生的焦耳热;
(3)若磁场随时间均匀变化,磁感应强度(k>0),开始导体棒静止,从t="0" 时刻起,求导体棒经过多长时间开始运动以及运动的方向.
如图所示,在xoy平面y>O的区域内有沿y轴负方向的匀强电场,在y<O的区域内有垂直于xoy平面向里的匀强磁场.一质量为m、电荷量为q的带电粒子从坐标为(2l,l)的P点以初速度v0沿x轴负方向开始运动,恰能从坐标原点O进入磁场..不计带电粒子重力.
(1)求匀强电场场强的大小
(2)若带电粒子每隔相同的时间以相同的速度通过O点,则磁感应强度大小B1为多少?
(3)若带电粒子离开P点后只能通过O点两次,则磁感应强度大小B2为多少?