已知函数
(1)若在区间[1,+∞)上是增函数,求实数a的取值范围;
(2)若x=-是
的极值点,求
在[1,a]上的最大值;
(3)在(2)的条件下,是否存在实数b,使得函数=bx的图象与函数
的图象恰有3个交点,若存在,请求出实数b的取值范围;若不存在,试说明理由.
如图,以为始边作角
,它们的终边分别与单位圆相交于点P、Q,已知点P的坐标为
(1)求的值;
(2)若求
的值.
已知函数.
(I)当时,求函数
的定义域;
(II)若关于的不等式
的解集是
,求
的取值范围
(本小题满分14分)
设
(1)若在其定义域内为单调递增函数,求实数
的取值范围;
(2)设,且
,若在
上至少存在一点
,使得
成立,求实数
的取值范围.
(本小题满分13分)已知某几何体的直观图和三视图如下图所示, 其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形.
(Ⅰ)证明:⊥平面
;
(Ⅱ)求平面与平面
所成角的余弦值;
(本小题12分)为了丰富学生的课余生活,促进校园文化建设,我校高二年级通过预赛选出了6个班(含甲、乙)进行经典美文颂读比赛决赛.决赛通过随机抽签方式决定出场顺序.
求:(1)甲、乙两班恰好在前两位出场的概率;
(2)决赛中甲、乙两班之间的班级数记为,求
的分布列和数学期望.