本题共有2个小题,第1小题满分6分,第2小题满分8分
沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时。如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的(细管长度忽略不计).
(1)如果该沙漏每秒钟漏下0.02cm3的沙,则该沙漏的一个沙时为多少秒(精确到1秒)?
(2)细沙全部漏入下部后,恰好堆成个一盖住沙漏底部的圆锥形沙堆,求此锥形沙堆的高度(精确到0.1cm).
已知二次函数的二次项系数为
,且不等式
的解集为
.
(1)若方程有两个相等的实数根, 求
的解析式;
(2)若的最大值为正数,求
的取值范围.
已知命题p:,命题q:
. 若“p且q”为真命题,求实数m的取值范围.
(本小题满分14分)已知函数.
(Ⅰ)若曲线在
和
处的切线互相平行,求
的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意
,均存在
,使得
,求
的取值范围.
(本小题满分13分)
已知向量m=n=
.
(1)若m·n=1,求的值;
(2)记函数f(x)= m·n,在中,角A,B,C的对边分别是a,b,c,且满足
求f(A)的取值范围.
已知定义在区间(0,+∞)上的函数f(x)满足f(+f(x2)=f(x1),且当x>1时,f(x)<0.
(1)求f(1)的值;
(2)判断f(x)的单调性并加以证明;
(3)若f(3)=-1,解不等式f(|x|)>-2.