本题共有2个小题,第1小题满分6分,第2小题满分8分
沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时。如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的(细管长度忽略不计).
(1)如果该沙漏每秒钟漏下0.02cm3的沙,则该沙漏的一个沙时为多少秒(精确到1秒)?
(2)细沙全部漏入下部后,恰好堆成个一盖住沙漏底部的圆锥形沙堆,求此锥形沙堆的高度(精确到0.1cm).
(本小题满分14分)
设数列满足
.
(Ⅰ)求;
(Ⅱ)设,数列
的前n项和为
.求证:
.
(本小题满分15分)
已知椭圆:
(
)的右焦点为
,且椭圆
上一点
到其两焦点
的距离之和为
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线与椭圆
交于不同两点
,且
.若点
满足
,求
的值.
(本小题满分15分)
设抛物线:
的焦点为
,过
且斜率为
的直线
交抛物线
于
,
两点,且
.
(Ⅰ)求抛物线的标准方程;
(Ⅱ)若,
为坐标原点,求
的面积.
(本小题满分15分)
对于函数,若存在
,使
成立,则称
为
的一个不动点.
设函数(
).
(Ⅰ)当,
时,求
的不动点;
(Ⅱ)设函数的对称轴为直线
,若
为
的不动点,且
,求证:
.
(本小题满分15分)
等差数列中,
,
.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求
.