本题共有 3 个小题,第 1 小题满分 3 分,第 2 小题满分4分,第 3 小题满分5分.
已知抛物线,过原点作斜率为1的直线交抛物线于第一象限内一点
,又过点
作斜率为
的直线交抛物线于点
,再过
作斜率为
的直线交抛物线于点
,
,如此继续。一般地,过点
作斜率为
的直线交抛物线于点
,设点
.
(1)求的值;
(2)令,求证:数列
是等比数列;
(3)记 为点列
的极限点,求点
的坐标.
甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为 ,乙每次投篮的命中率均为 .由抽签确定第 次投篮的人选,第 次投篮的人是甲、乙的概率各为 .
(1)求第 次投篮的人是乙的概率;
(2)求第 次投篮的人是甲的概率;
(3)已知:若随机变量 服从两点分布,且 , 则 .记前 次(即从第 次到第 次投篮)中甲投篮的次数为 ,求 .
设等差数列 的公差为 ,且 .令 ,记 , 分别为数列 , 的前 项和.
(1)若 , ,求 的通项公式;
(2)若 为等差数列,且 ,求 .
已知函数 .
(1)讨论 的单调性;
(2)证明:当 时, .
如图,在正四棱柱 中, , .点 , , , 分别在棱 , , , 上, , , .
(1)证明: ;
(2)点 在棱 上,当二面角 为 时,求 .
已知在 中, , .
(1)求 ;
(2)设 ,求 边上的高.