(本小题满分13分)为了加强环保建设,提高社会效益和经济效益,某市计划用若干年时间更换10000辆燃油型公交车。每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车。今年初投入了电力型公交车辆,混合动力型公交车
辆,计划以后电力型车每年的投入量比上一年增加
,混合动力型车每年比上一年多投入
辆.设
、
分别为第
年投入的电力型公交车、混合动力型公交车的数量,设
、
分别为
年里投入的电力型公交车、混合动力型公交车的总数量。
(1)求、
,并求
年里投入的所有新公交车的总数
;
(2)该市计划用年的时间完成全部更换,求
的最小值.
已知椭圆的中心在原点,焦点在x轴上,连接它的四个顶点得到的四边形的面积是4,分别连接椭圆上一点(顶点除外)和椭圆的四个顶点,连得线段所在四条直线的斜率的乘积为
,求这个椭圆的标准方程。
已知圆的方程x2+y2=25,点A为该圆上的动点,AB与x轴垂直,B为垂足,点P分有向线段BA的比λ=,
(1)求点P的轨迹方程并化为标准方程形式;
(2)写出轨迹的焦点坐标和准线方程。
解不等式:(1)log 2≤0.
(2)≥0
已知函数(其中
是常数).
(1)若当时,恒有
成立,求实数
的取值范围;
(2)若存在,使
成立,求实数
的取值范围;
甲、乙两地相距12km.A车、B车先后从甲地出发匀速驶向乙地.A车从甲地到乙地需行驶15min;B车从甲地到乙地需行驶10min.若B车比A车晚出发2min:
(1)分别写出A、B两车所行路程关于A车行驶时间的函数关系式;
(2) A、B两车何时在途中相遇?相遇时距甲地多远?