(本小题满分12分)已知的三个内角A、B、C的对边分别为
,且
的面积
.
(1)求角B的大小;
(2)若,且
,求边
的取值范围.
如图,在四棱锥中,底面
是正方形,
底面
,
,点
是
的中点,
,交
于点
.
(1)求证:平面平面
;
(2)求三棱锥的体积.
城市公交车的数量若太多则容易造成资源的浪费;若太少又难以满足乘客需求.某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:分钟):
组别 |
候车时间 |
人数 |
一 |
![]() |
2 |
二 |
![]() |
6 |
三 |
![]() |
4 |
四 |
![]() |
2 |
五 |
![]() |
1 |
(1)估计这60名乘客中候车时间少于10分钟的人数;
(2)若从上表第三、四组的6人中任选2人作进一步的调查,求抽到的两人恰好来自不同组的概率.
如图所示,扇形AOB,圆心角AOB的大小等于,半径为2,在半径OA上有一动点C,过点C作平行于OB的直线交弧AB于点P.
(1)若C是半径OA的中点,求线段PC的长;
(2)设,求
面积的最大值及此时
的值.
已知数列为等差数列,且
.
(1)求数列的通项公式;
(2)证明…
.
已知函数.
(1)当时,求函数
的单调区间;
(2)若函数有两个极值点
,且
,求证:
;
(Ⅲ)设,对于任意
时,总存在
,使
成立,求实数
的取值范围.