如图所示,四棱锥P-ABCD中,底面ABCD为菱形,且直线PA⊥平面ABCD,又棱PA=AB=2,E为CD的中点,.(Ⅰ)求证:直线EA⊥平面PAB;(Ⅱ)求直线AE与平面PCD所成角的正切值.
已知. (Ⅰ)求的值; (Ⅱ)求的值.
已知函数,. (Ⅰ)列表并画出函数在上的简图; (Ⅱ)若,,求.
求证:.
已知向量,. (Ⅰ)求与的夹角的余弦值; (Ⅱ)若向量与平行,求的值.
已知椭圆的离心率为,两焦点之间的距离为4. (I)求椭圆的标准方程; (II)过椭圆的右顶点作直线交抛物线于A、B两点. (1)求证:OA⊥OB; (2)设OA、OB分别与椭圆相交于点D、E,过原点O作直线DE的垂线OM,垂足为M,证明|OM|为定值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号