(本小题满分12分)已知函数(其中,,)的最大值为2,最小正周期为.(1)求函数的解析式及函数的增区间;(2)若函数图象上的两点的横坐标依次为,为坐标原点,求△ 的面积.
已知数列的前项和为,,且 (1)求k的值; (2)求证是等比数列; (3)记为数列的前n项和,求的值.
已知向量 (I)求的值; (II)若的值.
解关于的不等式.
如图,四棱锥 S-ABCD的底面是正方形,每条侧棱的长都是地面边长的 倍, P为侧棱SD上的点。 (Ⅰ)求证: AC⊥ SD; (Ⅱ)若 SD⊥ 平面 PAC,求二面角 P-AC-D的大小 (Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E,使得BE∥平 面PAC。若存在,求SE:EC的值 ;若不存在,试说明理由。
求同时满足下列条件的所有的复数z, ①z+ ∈R, 且1<z+ ≤6;②z的实部和虚部都是整数.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号