如图,正比例函数 的图象与反比例函数 的图象交于点 .在 中, ,点 坐标为 .
(1)求 的值;
(2)求 所在直线的解析式.
一场数学游戏在两个非常聪明的学生甲、乙之间进行.裁判先在黑板上写出下面的正整数 ,然后随意擦去一个数.接下来由乙、甲两人轮流擦去其中的一个数(即乙先擦去其中的一个数,然后甲再擦去一个数,如此轮流下去),若最后剩下的两个数互质,则判甲胜;否则,判乙胜.
按照这种游戏规则,求甲获胜的概率(用具体的数字作答).
口袋中有 个相同的小球,它们分别写有数字 ,从口袋中随机取出两个球,用所得的两个数 和 构成函数 和 ,求使这两个函数的交点在直线 右侧的概率.
假设有一个正八面体的骰子,八个面上分别写上了 这 个数字,每一次投掷这个骰子,出现这 个数字的机会都是一样的.若将骰子掷三次,依次记录朝上的面上三次出现的数字,设出现的数字中最大的一个用 表示,最小的一个用 表示.
(1)令 ,求 的取值范围;
(2)求 的概率.
在一个不透明的布袋里装有 个标有 的小球,它们的形状、大小完全相同.小明从布袋里随机取出一个小球,记下数字为 ,小红在剩下的 个小球中随机取出一个小球,记下数字为 ,这样确定了点 的坐标 .
(1)画树状图或列表,写出点 所有可能的坐标;
(2)求点 在函数 的图象上的概率;
(3)小明和小红约定做一个游戏,其规则为:若 满足 则小明胜;若 满足 则小红胜,这个游戏公平吗?说明理由;若不公平,请写出公平的游戏规则.