(本小题满分12分)已知函数=
.
(1)求函数的单调区间;
(2)若恒成立,试确定实数
的取值范围;
(3)证明:(
)
已知数列的首项
(1)证明:数列是等比数列;
(2)若数列的前n项和为
,试比较
与
的大小。
设动点到定点F(0,1)的距离比它到x轴的距离大1,记点P的轨迹为曲线C。
(1)求点P的轨迹方程;
(2)若圆心在曲线C上的动圆M过点A(0,2),试证明圆M与x轴必相交,且截x轴所得的弦长为定值。
设函数,其中实数
(1)求函数的单调区间;
(2)若在区间
上均为增函数,求a的取值范围。
如图,已知四边形ABCD是菱形,平面ABCD,PA=AB=BD=2,AC与BD交于E点,F是PD的中点。
(1)求证:PB//平面AFC;
(2)求多面体PABCF的体积。
乳制品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5。现从一批该乳制品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:
(1)若所抽取的20件乳制品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a,b,c的值;
(2)在(1)的条件下,将等级系数为4的乳制品记为,等级系数为5的乳制品记为
,现从这5件乳制品
中任取两件(假定每件乳制品被取出的可能性相同),写出所有可能的结果,并求这两件乳制品的等级系数恰好相同的概率