(本小题满分12分)20名学生某次数学考试成绩(单位:分)的频率分布直方图如图.
(1)求频率分布直方图中的a的值;
(2)分别求出成绩落在[50, 60)与[60, 70)中的学生人数.
(3)从成绩在[50, 70)的学生中任选2人,求这两人的成绩都在[60, 70)中的概率.
已知数列满足:
。
(I)已知数列的通项公式;
(II)证明:;
(III)设,证明:
。
已知函数。
(I)当a=1时,求在区间[1,e]的最大值和最小值;
(II)若在区间上,函数
的图象总在直线
的下方,求a的取值范围。
设函数(1)当
时,求
的最大值;(2)令
,(0
≤3),其图象上任意一点
处切线的斜率
≤
恒成立,求实数
的取值范围;(3)当
,
,方程
有唯一实数解,求正数
的值。
已知平面上的动点
及两定点A(-2,0),B(2,0),直线PA,PB的斜率分别是
,
,且
·
。(1)求动点P的轨迹C的方程;
(2)已知直线与曲线C交于M,N两点,且直线BM,BN的斜率都存在并满足
·
,求证:直线
过原点。
已知,等差数列的首项
,公差
,且第二项、第五项、第十四项分别是等比数列
的第二项、第三项、第四项。(1)求数列
的通项公式;(2)设数列
对任意正整数
均有
成立,求数列
的前
项的和