在一个不透明的口袋中装有大小、外形等一模一样的5个红球,3个兰球和2个白球,它们已经在口袋中搅匀了,请判断以下事件是“必然发生”、“随机发生”、还是“不可能发生”的?并说明理由.
(1)从口袋中任意取出5个球,只有兰球和白球,没有红球;
(2)从口袋中任意取出5个球,恰好兰球、白球、红球三种颜色都齐全了;
(3)从口袋中一次取出5个球,全是兰球.
在 中,已知 是 边的中点, 是 的重心,过 点的直线分别交 、 于点 、 .
(1)如图1,当 时,求证: ;
(2)如图2,当 和 不平行,且点 、 分别在线段 、 上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.
(3)如图3,当点 在 的延长线上或点 在 的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.
如图,直线 与 相离, 于点 ,与 相交于点 , . 是直线 上一点,连结 并延长交 于另一点 ,且 .
(1)求证: 是 的切线;
(2)若 的半径为3,求线段 的长.
已知关于 的一元二次方程 .
(1)求证:无论 为任何实数,此方程总有两个实数根;
(2)若方程的两个实数根为 、 ,满足 ,求 的值;
(3)若 的斜边为5,另外两条边的长恰好是方程的两个根 、 ,求 的内切圆半径.
某校组织学生参加“安全知识竞赛”,测试结束后,张老师从七年级720名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示.试根据条形统计图中提供的信息,回答下列问题:
(1)张老师抽取的这部分学生中,共有 名男生, 名女生;
(2)张老师抽取的这部分学生中,女生成绩的众数是 ;
(3)若将不低于27分的成绩定为优秀,请估计七年级720名学生中成绩为优秀的学生人数大约是多少.
如图,已知过点 的直线 与直线 相交于点 .
(1)求直线 的解析式;
(2)求四边形 的面积.