已知:关于x的方程x2﹣(k+2)x+2x=0
(1)求证:无论取任何实数值,方程总有实数根;
(2)若等腰三角形ABC的一边长a=1,另两边长b,c恰好是这个方程的两个根,求△ABC的周长.
(本小题满分8分)如图,在一面与地面垂直的围墙的同一侧有一根高10米的旗杆AB和一个高度未知的电线杆CD,它们都与地面垂直。为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光的照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米;而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米。依据这些数据,该小组的同学计算出了电线杆的高度。
(1)该小组的同学在这里利用的是____________投影的有关知识进行计算的;
(2)试计算出电线杆的高度,并写出计算的过程。
如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.
(1)求证:四边形CEDF是平行四边形;
(2)①当AE= cm时,四边形CEDF是矩形;
②当AE= cm时,四边形CEDF是菱形;(直接写出答案,不需要说明理由)
(贵州省安顺市)(本题12分)
如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF//AB交AC于F
(1)求证:AE=DF.
(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.
(内蒙古 呼 和 浩 特 )如图,ABCD的对角线AC、BD相交于点O,AE=CF.
(1)求证:△BOE ≌△DOF ;
(2)若BD=EF,连接DE、BF,判断四边形EBFD的形状,无需说明理由.
(贵州六盘水)(本小题12分)如图,已知Rt△ACB中,∠C=90°,∠BAC=45°.
(1)用尺规作图,:在CA的延长线上截取AD=AB,并连接BD(不写作法,保留作图痕迹)
(2)求∠BDC的度数.
(3)定义:在直角三角形中,一个锐角A的邻边与对边的比叫做∠A的余切,记作cotA,即,根据定义,利用图形求cot22.5°的值.