【选修4—4:坐标系与参数方程】(本小题满分10分)已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合.曲线C的极坐标方程为,直线l的参数方程为(t为参数,t∈R).试在曲线C上求一点M,使它到直线l的距离最大.
求满足下列条件的椭圆方程长轴在轴上,长轴长等于12,离心率等于;椭圆经过点;椭圆的一个焦点到长轴两端点的距离分别为10和4.
计算: (1);(2); (3);(4)
已知函数. (1)若曲线在点处的切线与直线垂直,求实数的值. (2)若,求的最小值; (3)在(Ⅱ)上求证:.
设正项数列都是等差数列,且公差相等,(1)求的通项公式;(2)若的前三项,记数列数列的前n项和为
已知向量. (1)若,求; (2)设的三边满足,且边所对应的角的大小为,若关于的方程有且仅有一个实数根,求的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号