如图甲所示,BCD为竖直放置的半径R=0.20m的半圆形轨道,在半圆形轨道的最低位置B和最高位置D均安装了压力传感器,可测定小物块通过这两处时对轨道的压力FB和FD。半圆形轨道在B位置与水平直轨道AB平滑连接,在D位置与另一水平直轨道EF相对,其间留有可让小物块通过的缝隙。一质量m=0.20kg的小物块P(可视为质点),以不同的初速度从M点沿水平直轨道AB滑行一段距离,进入半圆形轨道BCD经过D位置后平滑进入水平直轨道EF。一质量为2m的小物块Q(可视为质点)被锁定在水平直轨道EF上,其右侧固定一个劲度系数为k=500N/m的轻弹簧。如果对小物块Q施加的水平力F≥30N,则它会瞬间解除锁定沿水平直轨道EF滑行,且在解除锁定的过程中无能量损失。已知弹簧的弹性势能公式,其中k为弹簧的劲度系数,x为弹簧的形变量。g取10m/s2。
(1)通过传感器测得的FB和FD的关系图线如图乙所示。若轨道各处均不光滑,且已知轨道与小物块P之间的动摩擦因数μ=0.10,MB之间的距离xMB=0.50m。当 FB=18N时,求:
①小物块P通过B位置时的速度vB的大小;
②小物块P从M点运动到轨道最高位置D的过程中损失的总机械能;
(2)若轨道各处均光滑,在某次实验中,测得P经过B位置时的速度大小为m/s。求在弹簧被压缩的过程中,弹簧的最大弹性势能。
如图所示, 木板静止于水平地面上, 在其最右端放一可视为质点的木块. 已知木块的质量m=1 kg, 木板的质量M=4 kg, 长L=2.5 m, 上表面光滑, 下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F=20 N拉木板, g取10 m/s2, 求:
(1)要使木块能滑离木板, 水平恒力F作用的最短时间;
(2)如果其他条件不变, 假设木板的上表面也粗糙, 其上表面与木块之间的动摩擦因数为μ1=0.3, 欲使木板能从木块的下方抽出, 需对木板施加的最小水平拉力;
如图所示,在倾角为θ的斜面上,N点上方粗糙,下方光滑,一物块(可视为质点)从N点上方离N距离为S的P点由静止释放,下滑到N处开始压缩弹簧后又被弹离,第二次上滑最远位置离N距离为0.5S.(不计物体与弹簧接触瞬间能量的损失)求:
(1)物块与粗糙斜面间的动摩擦因数
(2)若已知物块的质量为m,弹簧压缩最短时的弹性势能为EP,则物体从弹簧被压缩最短运动到N点的距离L为多少?
如图所示,一带电荷量为+q、质量为m的小物块处于一倾角为37°的光滑斜面上,当整个装置置于一水平向右的匀强电场中,小物块恰好静止.重力加速度取g,sin 37°=0.6,cos 37°=0.8.求:
(1)水平向右的电场的电场强度;
(2)若将电场强度减小为原来的,小物块的加速度是多大;
(3)电场强度变化后小物块下滑距离L时的动能.
如图所示,水平光滑绝缘轨道MN的左端有一固定绝缘挡板,轨道所在空间存在水平向左、E=4×102N/C的匀强电场。一个质量m=0.2kg、带电荷量q=5.0×10-5C的滑块(可视为质点),从轨道上与挡板相距x1=0.2m的P点由静止释放,滑块在电场力作用下向左做匀加速直线运动。当滑块与挡板碰撞后滑块沿轨道向右做匀减速直线运动,运动到与挡板相距x2=0.1m的Q点,滑块第一次速度减为零。若滑块在运动过程中,电荷量始终保持不变,求:
(1)滑块由静止释放时的加速度大小a;
(2)滑块从P点第一次达到挡板时的速度大小v;
(3)滑块与挡板第一次碰撞的过程中损失的机械能ΔE。
体育老师带领学生做了一个游戏,在直线跑道上距离出发点32 m、100 m的处分别放有1枚硬币,游戏规则是把这2枚硬币全部捡起来(捡硬币时,人的速度为0),看谁用的时间最短。已知某同学做匀加速运动和匀减速运动的加速度大小均为2m/s2,运动的最大速度不超过10 m/s。求该同学捡起2枚硬币所需要的最短时间。