如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,求CE的长.
如图,点 在以 为直径的 上,点 是 的中点,过点 作 垂直于 ,交 的延长线于点 ,连接 交 于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
如图,一艘船以每小时30海里的速度向北偏东 方向航行,在点 处测得码头 在船的东北方向,航行40分钟后到达 处,这时码头 恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头 的最近距离.(结果精确到0.1海里,参考数据 ,
某中学开展“汉字听写大赛”活动, 为了解学生的参与情况, 在该校随机抽取了四个班级学生进行调查, 将收集的数据整理并绘制成图 1 和图 2 两幅尚不完整的统计图, 请根据图中的信息, 解答下列问题:
(1) 这四个班参与大赛的学生共 人;
(2) 请你补全两幅统计图;
(3) 求图 1 中甲班所对应的扇形圆心角的度数;
(4) 若四个班级的学生总数是 160 人, 全校共 2000 人, 请你估计全校的学生中参与这次活动的大约有多少人 .
如图,有四张背面完全相同的纸牌 、 、 、 ,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.
(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;
(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用 、 、 、 表示).
如图,抛物线 与 轴的两个交点分别为 , ,与 轴交于点 ,点 在 轴正半轴上,且 .
(1)求抛物线的解析式;
(2)如图1,抛物线的顶点为点 ,对称轴交 轴于点 ,连接 , ,请在抛物线的对称轴上找一点 ,使 ,求出点 的坐标;
(3)如图2,过点 作 轴,交抛物线于点 ,连接 ,点 是 轴上一点,在抛物线上是否存在点 ,使以点 , , , 为顶点的四边形是平行四边形?若存在,请直接写出点 的坐标;若不存在,请说明理由.