(本小题满分14分)已知椭圆,其中
为左、右焦点,O为坐标原点.直线l与椭圆交于
两个不同点.当直线l过椭圆C右焦点F2且倾斜角为
时,原点O到直线l的距离为
.又椭圆上的点到焦点F2的最近距离为
.
(1)求椭圆C的方程;
(2)以OP,OQ为邻边做平行四边形OQNP,当平行四边形OQNP面积为时,求平行四边形OQNP的对角线之积
的最大值;
(3)若抛物线为焦点,在抛物线C2上任取一点S(S不是原点O),以OS为直径作圆,交抛物线C2于另一点R,求该圆面积最小时点S的坐标.
如图,某灌溉渠的横断面是等腰梯形,底宽为2 m,渠深为1.8 m,边坡的倾斜角是45°.
(1)试将横断面中水的面积A(m2)表示成水深h(m)的函数;
(2)确定函数的定义域和值域;
(3)画出函数的图象.
如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:
(1)最初到达离家最远的地方是什么时间?离家多远?
(2)何时开始第一次休息?休息多长时间?
(3)第一次休息时,离家多远?
(4)11:00到12:00他骑了多少千米?
(5)他在9:00~10:00和10:00~10:30的平均速度分别是多少?
(6)他在哪段时间里停止前进并休息用午餐?
求下列函数的定义域:
(1)y=-
;
(2)y=
求下列函数的定义域:
(1)f(x)=;
(2)f(x)=;
(3)f(x)=+
.
已知函数在
上有最大值
和最小值
,求
、
的值。