如图,在Rt△ACB中,∠C=90°, AC=6m,BC=8m,点P、Q同时由A、B两点出发分别沿AC,BC方向向点C匀速运动,它们的速度都是1m/s,几秒后△PCQ的面积为Rt△ACB面积的一半?
﹣(本题12分)在一平直河岸同侧有
两个村庄,
到
的距离分别是3km和2km,
.现计划在河岸
上建一抽水站
,用输水管向两个村庄供水.
方案设计
某班数学兴趣小组设计了两种铺设管道方案:图(1)是方案一的示意图,设该方案中管道长度为,且
(其中
于点
);图(2)是方案二的示意图,设该方案中管道长度为
,且
(其中点
与点
关于
对称,
与
交于点
).
![]() |
(1)观察计算
在方案一中,km(用含
的式子表示);
在方案二中,组长小宇为了计算的长,作了如图(3)所示的辅助线,请你按小宇同学的思路计算,
km(用含
的式子表示).
(2)探索归纳
①当时,比较大小:
(填“>”、“=”或“<”);
当时,比较大小:
(填“>”、“=”或“<”);
②请你参考右边方框中的方法指导,
就(当
时)的所有取值情况进
行分析,要使铺设的管道长度较短,
应选择方案一还是方案二?
﹣(本题10分)已知: 如图, AB是⊙O的直径,⊙O过AC的中点D, DE切⊙O于点D, 交BC于点E.
(1)求证: DE⊥BC;
(2)如果CD=4,CE=3,求⊙O的半径.
﹣(本题10分)如图,在边长为1的小正方形组成的网格中,的三个顶点均在格点上,请按要求完成下列各题:
(1)用签字笔画AD∥BC(D为格点),连接CD;线段CD的长为;
(2)请你在的三个内角中任选一个锐角,若你所选的锐角是,则它所对应的正弦函数值是.
(3)若E为BC中点,则tan∠CAE的值是.
﹣(本题8分) 小明有2枚黑棋子,小亮有2枚白棋子,两人随机将4枚棋子放在下图
的格子中(每格只放一枚)。若4枚棋子黑白相间排列,就算小明赢,否则就算小亮赢.这
个游戏对双方公平吗?请说明理由.
﹣(本题8分)“五一”期间,某超市贴出促销海报,内容如图1.在商场活动期间,王莉和同组同学随机调查了部分参与活动的顾客,统计了200人次的摸奖情况,绘制成如图2的频数分布直方图.
![]() |
|||
|
|||