游客
题文

(文科)已知△ABC的两顶点A、B分别是双曲线2x2﹣2y2=1的左、右焦点,且sinC是sinA、sinB的等差中项.
(Ⅰ)求顶点C的轨迹T的方程;
(Ⅱ)设P(﹣2,0),M、N是轨迹T上不同两点,当PM⊥PN时,证明直线MN恒过定点,并求出该定点的坐标.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

在等比数列 { a n } 中, a 2 - a 1 = 2 ,且 2 a 2 3 a 1 a 3 的等差中项,求数列 { a n } 的首项、公比及前 n 项和.

已知:,求证:.

已知圆的参数方程为为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆的极坐标方程为
(Ⅰ)将圆的参数方程化为普通方程,将圆的极坐标方程化为直角坐标方程;
(Ⅱ)圆是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.

如图,已知切⊙于点E,割线PBA交⊙于A、B两点,∠APE的平分线和AE、BE分别交于点C、D.

求证:
(Ⅰ)
(Ⅱ)

已知f(x)=在区间[-1,1]上是增函数.
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号