(文科)已知△ABC的两顶点A、B分别是双曲线2x2﹣2y2=1的左、右焦点,且sinC是sinA、sinB的等差中项.
(Ⅰ)求顶点C的轨迹T的方程;
(Ⅱ)设P(﹣2,0),M、N是轨迹T上不同两点,当PM⊥PN时,证明直线MN恒过定点,并求出该定点的坐标.
在等比数列 中, ,且 为 和 的等差中项,求数列 的首项、公比及前 项和.
已知:,求证:
.
已知圆的参数方程为
(
为参数),以坐标原点
为极点,x轴的正半轴为极轴建立极坐标系,圆
的极坐标方程为
.
(Ⅰ)将圆的参数方程化为普通方程,将圆
的极坐标方程化为直角坐标方程;
(Ⅱ)圆、
是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.
如图,已知切⊙
于点E,割线PBA交⊙
于A、B两点,∠APE的平分线和AE、BE分别交于点C、D.
求证:
(Ⅰ);
(Ⅱ).
已知f(x)=在区间[-1,1]上是增函数.
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.