(理科)已知椭圆的两个焦点分别为
,
.点
与椭圆短轴的两个端点的连线相互垂直.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点的坐标为
,点
的坐标为
.过点
任作直线
与椭圆
相交于
,
两点,设直线
,
,
的斜率分别为
,
,
,若
,试求
满足的关系式.
已知椭圆的焦点为F1(-4,0),F2(4,0),过点F2且垂直于轴的直线与椭圆的一个交点为B,且|BF1|+|BF2|=10,设点A,C为椭圆上不同两点,使得|AF2|,|BF2|,|CF2|成等差数列。
(Ⅰ) 求椭圆的标准方程;
(Ⅱ) 求线段AC的中点的横坐标;
(Ⅲ)求线段AC的垂直平分线在y轴上的截距的取值范围。
设a为实常数,已知函数在区间[1,2]上是增函数,且
在区间[0,1]上是减函数。
(Ⅰ)求常数的值;
(Ⅱ)设点P为函数图象上任意一点,求点P到直线
距离的最小值;
(Ⅲ)若当且
时,
恒成立,求
的取值范围。
某市物价局调查了某种治疗H1N1流感的常规药品在2009年每个月的批发价格和该药品在药店的销售价格,调查发现,该药品的批发价格按月份以12元/盒为中心价随某一正弦曲线上下波动,且3月份的批发价格最高为14元/盒,7月份的批发价格最低为10元/盒。该药品在药店的销售价格按月份以14元/盒为中心价随另一正弦曲线上下波动,且5月份的销售价格最高为16元/盒,9月份的销售价格最低为12元/盒。
(Ⅰ)求该药品每盒的批发价格f(x)和销售价格g(x)关于月份的函数解析式;
(Ⅱ)假设某药店每月初都购进这种药品p盒,且当月售完,求该药店在2009年哪些月份是盈利的?说明你的理由。
设数列的前
项和为
,已知对任意正整数
,都有
成立。
(I)求数列的通项公式;
(II)设,数列
的前
项和为
,求证:
。
如图,圆柱的轴截面ABCD是正方形,点E在底面圆周上,点F在DE上,且AF⊥DE,若圆柱的底面积与△ABE的面积之比等于π。
(Ⅰ)求证:AF⊥BD;
(Ⅱ)求直线DE与平面ABCD所成角的正切值。