在一次考试中,5名同学数学、物理成绩如下表所示:
学生 |
A |
B |
C |
D |
E |
数学(x分) |
89 |
91 |
93 |
95 |
97 |
物理(y分) |
87 |
89 |
89 |
92 |
93 |
(1)根据表中数据,求物理分对数学分
的回归方程:
(2)要从4名数学成绩在90分以上的同学中选出2名参加一项活动,以表示选中的同学中物理成绩高于90分的人数,求随机变量
的分布列及数学期望
.(附:回归方程
中,
,
)
已知函数.
(Ⅰ)当时,函数
取得极大值,求实数
的值;
(Ⅱ)已知结论:若函数在区间
内存在导数,则存在
,使得
. 试用这个结论证明:若函数
(其中
),则对任意
,都有
;
(Ⅲ)已知正数满足
,求证:对任意的实数
,若
时,都有
.
如图,在长方体中,已知上下两底面为正方形,且边长均为1;侧棱
,为
中点,
为
中点,
为
上一个动点.
(Ⅰ)确定点的位置,使得
;
(Ⅱ)当时,求二面角
的平
面角余弦值.
已知等差数列的首项
,公差
.且
分别是等比数列
的
.
(Ⅰ)求数列与
的通项公式;
(Ⅱ)设数列对任意自然数
均有
…
成立,求
…
的值.
已知△的两个顶点
的坐标分别是
,且
所在直线的斜率之积等于
.
(Ⅰ)求顶点的轨迹
的方程,并判断轨迹
为何种圆锥曲线;
(Ⅱ)当时,过点
的直线
交曲线
于
两点,设点
关于
轴的对称点为
(
不重合) 试问:直线
与
轴的交点是否是定点?若是,求出定点,若不是,请说明理由.
如图是在竖直平面内的一个“通道游戏”.图中竖直线段和斜线段都表示通道,并且在交点处相遇,若竖直线段有一条的为第一层,有二条的为第二层,…,依次类推.现有一颗小弹子从第一层的通道里向下运动,若在通道的分叉处,小弹子以相同的概率落入每个通道.记小弹子落入第层第
个竖直通道(从左至右)的概率为
,某研究性学习小组经探究发现小弹子落入第
层的第
个通道的次数服从二项分布,请你解决下列问题.
(Ⅰ)试求及
的值,并猜想
的表达式;(不必证明)
(Ⅱ)设小弹子落入第6层第个竖直通道得到分数为
,其中
,试求
的分布列
及数学期望.