为选拔选手参加“中国汉字听写大会”,某中学举行了一次“汉字听写大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为)进行统计.按照
,
,
,
,
的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在
,
的数据).
(1)求样本容量和频率分布直方图中的
、
的值;
(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取3名学生参加“中国汉字听写大会”,设随机变量表示所抽取的3名学生中得分在
内的学生人数,求随机变量
的分布列及数学期望.
如图四棱锥P-ABCD中,底面ABCD为矩形,PA底面ABCD,PA=AB=
,点E是棱PB的中点。(1)求直线AD与平面PBC的距离。
(2)若AD=,求二面角A-EC-D的平面角的余弦值。
甲、乙两人独立解出某一道数学题的概率相同。已知该题被甲或乙解出的概率为0.36。求:(I)甲独立解出该题的概率。(II)恰有1人解出该题的概率。
已知函数
(1)写出的单调区间;(2)设
在[0,
]上的最大值。
已知全集集合
,
,求
(本题满分12分)已知函数f(x) =4x3+ax2+bx+5在x=-1与x=处有极值。
(1)写出函数的解析式;
(2)求出函数的单调区间;
(3)求f(x)在[-1,2]上的最值。