游客
题文

【改编】(本小题满分10分)已知函数
(Ⅰ)当时,求函数的单调递增区间
(Ⅱ)当时,求函数的极大值
(Ⅲ)在(Ⅱ)条件下,利用(Ⅱ)的结论证明不等式:

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题满分10分)选修4—4:坐标系与参数方程
已知在直角坐标系中,曲线的参数方程为为参数).在极坐标系(与直角坐标取相同的长度单位,且以原点为极点,轴的非负半轴为极轴)中,曲线的方程为
(Ⅰ)求曲线直角坐标方程,并说明方程表示的曲线类型;
(Ⅱ)若曲线交于A、B两点,定点,求的最大值.

(本小题满分10分)选修4-1:几何证明选讲
如图,圆O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交圆O于N,点是线段延长线上一点,连接PN,且满足

(Ⅰ)求证:是圆O的切线;
(Ⅱ)若圆O的半径为,OA=OM,求MN的长.

(本小题满分12分)
已知函数
(Ⅰ),使得函数的切线斜率,求实数的取值范围;
(Ⅱ)求的最小值.

(本小题满分12分)
已知在椭圆中,分别为椭圆的左右焦点,直线过椭圆右焦点,且与椭圆的交点为(点在第一象限),若

(Ⅰ)求椭圆的方程;
(Ⅱ)以为圆心的动圆与轴分别交于两点A、B,延长,分别交椭圆两点,判断直线的斜率是否为定值,并说明理由.

(本小题满分12分)
直四棱柱中,底面为菱形,且延长线上的一点,且

(Ⅰ)求证:
(Ⅱ)在棱是否存在一点,使?若存在,求的值,若不存在,说明理由;
(Ⅲ)求二面角的大小;

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号