如图,∠1=∠2,AC平分∠DAB,求证:DC∥AB.
如图,函数 的图象与双曲线 相交于点 和点 .
(1)求双曲线的解析式及点 的坐标;
(2)若点 在 轴上,连接 , ,求当 的值最小时点 的坐标.
为了吸引游客,某景区通过加强对服务人员的培训、增建索道和开发新景点等措施,对景区品质进行提档升级,升级后游客人数平均每月是升级前的1.1倍还多3000人,且在 个月时间内,升级前只能达36万游客,而升级后可达43.2万游客.
(1)问升级前和升级后平均每月各有多少万游客?
(2)现在景区内去极险峰的索道票价为80元 张,为了确保景区索道运营有利润,又要保障游客安全,需使每天卖出的索道票总金额超过2万元而票数不超过1000张,问景区每天卖出的索道票数的范围.
为了解学生的课外阅读情况,某市教育局在某校学生中随机抽取了100名学生进行调研,获得了他们一周的课外阅读时间的相关数据,通过整理得到如下的频数分布直方图.
(1)已知阅读时间在 之间的学生的频率为0.4,求 、 的值.
(2)在样本数据中,从阅读时间在 之间与在 之间的两个时间段内的学生中随机选取2名学生,请用列举法求出任选的2人中恰有1人一周阅读时间在 之间的概率.
(3)该校规定一周课外阅读时间在10小时及以上的学生,可申请“博闻阅读”项目的资助,如果该校共有学生3000名,用样本估计该校可申请“博闻阅读”项目资助的学生人数.
如图,在平行四边形 中, 、 分别是 、 的中点, ,垂足为 , ,垂足为 , 与 相交于点 .
(1)证明: .
(2)若 ,求四边形 的对角线 的长.
如图1,点 坐标为 ,以 为边在第一象限内作等边 ,点 为 轴上一动点,且在点 右侧,连接 ,以 为边在第一象限内作等边 ,连接 交 于 .
(1)①直接回答: 与 全等吗?
②试说明:无论点 如何移动, 始终与 平行;
(2)当点 运动到使 时,如图2,经过 、 、 三点的抛物线为 .试问: 上是否存在动点 ,使 为直角三角形且 为直角边?若存在,求出点 坐标;若不存在,说明理由;
(3)在(2)的条件下,将 沿 轴翻折得 ,设 与 组成的图形为 ,函数 的图象 与 有公共点.试写出: 与 的公共点为3个时, 的取值.