如图1,在平面直角坐标系中,二次函数的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),OB=OC ,tan∠ACO=
.
(1)求这个二次函数的表达式.
(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.
(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.
(4)如图2,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.
某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共l5台.三种家电的进价和售价如下表所示:
(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?
(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?
如图,已知AO=6,P是射线ON上一动点(即P点可在射线ON上运动),∠AON=60º,设OP=x,那么
(1)当x为 时,△AOP为等边三角形;
(2)当x为 时,△AOP为直角三角形;
(3)当x满足 条件时,△AOP为锐角三角形;
(4)当x满足 条件时,△AOP为钝角三角形。
有一批货,如月初售出,可获利20000元,并可将本利和再去投资,到月末还可获利1.5%;如月末售出这批货,可获利24000元,但要付1000元管理费,为了获得最大利润,请你解答下列问题:
(1)设这批货的成本为x元,在月初售出, 并将本利和再去投资共可获利y元,试用x的代数式表示y;
(2) 请你根据x值或范围分析这批货在月初售出好还是月末好?
一个长方体材料的长、宽、高分别为9cm, 6cm, 5cm如图1,先从这个长方体左前部切下一个棱长为5的正方体得图2,再从剩余部分的右上角的前部切下一个棱长为4的正方体得图3,最后从第二次剩余部分的右上角的后部切下一个棱长为2正方体得图4的工件,现在请你在图1、图2、图3或图4中任意选择一个几何体(只能选一个,多算得零分),在答题框中列式并计算它的表面积。
如图1,一扇窗户打开后用窗钩AB可将其固定.
(1)这里所运用的几何原理是()
A.三角形的稳定性 | B.两点之间线段最短 |
C.两点确定一条直线 | D.垂线段最短 |
(2)图2是图1中窗子开到一定位置时的相关平面图,若∠OAB=45°,∠OBA=30°,
点O到AB边的距离为2cm,求窗钩AB的长(,结果精确到整数)