已知函数.
(Ⅰ)求函数的单调区间和极值;
(Ⅱ)已知函数的图象与函数
的图象关于直线
对称.证明当
时,
;
(Ⅲ)如果,且
,证明
。
如图,某兴趣小组测得菱形养殖区的固定投食点
到两条平行河岸线
的距离分别为4m、8m,河岸线
与该养殖区的最近点
的距离为1m,
与该养殖区的最近点
的距离为2m.
(1)如图甲,养殖区在投食点的右侧,若该小组测得
,请据此算出养殖区的面积;
(2)如图乙,养殖区在投食点的两侧,试在该小组未测得
的大小的情况下,估算出养殖区的最小面积.
如图甲,在直角梯形中,
,
,
,
是
的中点. 现沿
把平面
折起,使得
(如图乙所示),
、
分别为
、
边的中点.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面平面
;
(Ⅲ)在上找一点
,使得
平面
.
平面直角坐标系中,已知向量
且
.
(1)求与
之间的关系式;
(2)若,求四边形
的面积.
已知函数
(1) 求曲线在点A(0,
)处的切线方程;
(2) 讨论函数的单调性;
(3) 是否存在实数,使
当
时恒成立?若存在,求出实数a;若不存在,请说明理由.
已知数列的各项均为正数,
表示该数列前
项的和,且满足
,设
(1)求数列的通项;(2)证明:数列
为递增数列;
(3)是否存在正整数,使得
对任意正整数
恒成立,若存在,求出
的最小值。