(本小题满分16分)设,函数
.
(1)若为奇函数,求
的值;
(2)若对任意的,
恒成立,求
的取值范围;
(3)当时,求函数
零点的个数.
设是坐标平面上的一列圆,它们的圆心都在
轴的正半轴上,且都与直线
相切,对每一个正整数
,圆
都与圆
相互外切,以
表示
的半径,已知
为递增数列.
(Ⅰ)证明:为等比数列;
(Ⅱ)设,求数列
的前
项和.
已知三棱锥P-ABC中,PA⊥面ABC,AB⊥AC,PA=AC=½AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小。
已知动圆M与圆外切,圆
内切
求动圆圆心M 的轨迹方程。
已知为等差数列,且
,
。
(Ⅰ)求的通项公式;
(Ⅱ)若等比数列满足
,
,求
的前n项和公式。
的面积是30,内角
所对边长分别为
,
。
(Ⅰ)求;
(Ⅱ)若,求
的值。