如图所示,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°。
(1)求出∠AOB及其补角的度数;
(2)请求出∠DOC和∠AOE的度数,并判断∠DOE 与∠AOB是否互补,并说明理由。
已知直线及其两侧两点A、B,如图.
(1)在直线上求一点P,使PA=PB;
(2)在直线上求一点Q,使
平分∠AQB.(保留尺规作图痕迹)
如图,在正方形网格上的一个△ABC.
(1)作△ABC关于直线MN的对称图形(不写作法);
(2)以P为一个顶点作与△ABC全等的三角形(规定点P与点B对应,另两顶点都在图中网格交点处),
则可作出____________个三角形与△ABC全等.
(3)在直线MN上找一点Q,使QB+QC的长最短.
(本题共7分)如图,A点的初始位置位于数轴上的原点。
现对A点做如下移动:第1次从原点向右移动1个单位长度至B点,第2次从B点向左移动3个单位长度至C点,第3次从C点向右移动6个单位长度至D点,第4次从D点向左移动9个单位长度至E点,…,依此类推,这样,
(1)移动1次后该点到原点的距离为_________个单位长度;
(2)移动2次后该点,到原点的距离为_________ 个单位长度;
(3)移动3次后该点到原点的距离为_________个单位长度;
(4)试问移动n次后该点到原点的距离为多少个单位长度?
某餐厅中1张长方形的桌子可坐 6人,按下图方式将桌子拼在一起.
(1)填下表:
(2)若餐厅有72张这样的长方形桌子,按照上图方式每8张拼成1张大桌子,则72张桌子可拼成9张大桌子,共可坐_________人.
(3)
桌子数 |
1 |
2 |
3 |
4 |
5 |
… |
n |
人数 |
6 |
8 |
… |
若将餐厅中的若干张桌子拼成一张大桌子,恰好坐下200人,则餐厅共有桌子 __________张.
多项式是关于
的三次三项式,并且二次项系数为1,求
的值.