2013年国庆,全国从1日到7日放假七天,高速公路免费通行,各地景区游人如织.其中,闻名于世的福州三坊七巷,在9月30日的游客人数为0.9万人,接下来的七天中,每天的游客人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).
日期 |
10月1日 |
10月2日 |
10月3日 |
10月4日 |
10月5日 |
10月6日 |
10月7日 |
人数变化 (万人) |
+3.1 |
+1.78 |
﹣0.58 |
﹣0.8 |
﹣1 |
﹣1.6 |
﹣1.15 |
(1)10月3日的人数为____万人.
(2)七天假期里,游客人数最多的是10月____日,达到____万人.游客人数最少的是10月____日,达到____万人.
(3)请问黄山风景区在这八天内一共接待了多少游客?(结果精确到万位)
(4)如果你也打算在下一个国庆节出游福州三坊七巷,对出行的日期有何建议?
下表为深圳市居民每月用水收费标准,(单位:元/m3)。
用水量 |
单价 |
x≤22 |
a |
剩余部分 |
a+1.1 |
(1)某用户用水10立方米,公交水费23元,求a的值;
(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?
某中学初二年级抽取部分学生进行跳绳测试.并规定:每分钟跳90次以下的为不及格;每分钟跳90~99次的为及格;每分钟跳100~109次的为中等;每分钟跳110~119次的为良好;每分钟跳120次及以上的为优秀.测试结果整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:
(1)参加这次跳绳测试的共有 人;
(2)补全条形统计图;
(3)在扇形统计图中,“中等”部分所对应的圆心角的度数是 ;
(4)如果该校初二年级的总人数是480人,根据此统计数据,请你估算该校初二年级跳绳成绩为“优秀”的人数.
某校体育社团在校内开展“最喜欢的体育项目(四项选一项)”调查,对九年级学生随机抽样,并将收集的数据绘制成如图两幅不完整的统计图,请结合统计图解答下列问题:
(1)求本次抽样人数有多少人?
(2)补全条形统计图;
(3)该校九年级共有600名学生,估计九年级最喜欢跳绳项目的学生有多少人?
在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(﹣2,﹣4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有有无数多个.
(1)若点M(2,a)是反比例函数(k为常数,
)图象上的“理想点”,求这个反比例函数的表达式;
(2)函数(m为常数,
)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.
阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:将方程②变形:4x+10y+y="5" 即2(2x+5y)+y=5③
把方程①带入③得:2×3+y=5,∴y=﹣1
把y=﹣1代入①得x=4,∴方程组的解为.
请你解决以下问题:(1)模仿小军的“整体代换”法解方程组;
(2)已知x,y满足方程组.
(i)求的值;
(ii)求的值.