已知,在△ABC中,AB=AC.过A点的直线a从与边AC重合的位置开始绕点A按顺时针方向旋转角θ,直线a交BC边于点P(点P不与点B、点C重合),△BMN的边MN始终在直线a上(点M在点N的上方),且BM=BN,连接CN.
(1)当∠BAC=∠MBN=90°时,
①如图a,当θ=45°时,∠ANC的度数为______;
②如图b,当θ≠45°时,①中的结论是否发生变化?说明理由;
(2)如图c,当∠BAC=∠MBN≠90°时,请直接写出∠ANC与∠BAC之间的数量关系,不必证明.
(本小题9分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.
(1)现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?
(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?
(本小题8分)已知:如图,C,D是以线段AB为直径的⊙O上的两点,且四边形OBCD是菱形.求证:.
(本小题8分)已知抛物线.
(1)求证:此抛物线与x轴必有两个不同的交点;
(2)若此抛物线与直线的一个交点在y轴上,求m的值.
如图,利用一面墙(墙的长度为20m),用34m长的篱笆围成两个鸡场,中间用一道篱笆隔开,每个鸡场均留一道1m宽的门,设AB的长为x米。
(1)若两个鸡场总面积为96m2,求x;
(2)若两个鸡场的面积和为S,求S关于x的关系式;
(3)两个鸡场面积和S有最大值吗?若有,最大值是多少?
如图,抛物线与x轴交于A,B两点,与直线
相交于B,C两点,连结A,C两点。
(1)写出直线BC的解析式
(2)求△ABC的面积