为了增强居民的节约用电意识,某市拟出台居民阶梯电价政策:每户每月用电量不超过230千瓦时的部分为第一档,按每千瓦时0.49元收费;超过230千瓦时且不超过400千瓦时的部分为第二档,超过的部分按每千瓦时0.54元收费;超过400千瓦时的部分为第三档,超过的部分按每千瓦时0.79元收费.
(1)将按阶梯电价计算得以下各家4月份应交的电费填入下表:
|
4月份总用电量/千瓦时 |
电费/元 |
小刚 |
200 |
|
小丽 |
300 |
|
(2)设一户家庭某月用电量为x千瓦时,写出该户此月应缴电费y(元)与用电量x(千瓦时)之间的函数关系式.
计算:(1)
如图,在平面直角坐标系中,直线y=x+1分别与两坐标轴交于B,A两点,C为该直线上的一动点,以每秒1个单位长度的速度从点A开始沿直线BA向上移动,作等边△CDE,点D和点E都在x轴上,以点C为顶点的抛物线y=a(x﹣m)2+n经过点E.⊙M与x轴、直线AB都相切,其半径为3(1﹣
)a.
(1)求点A的坐标和∠ABO的度数;
(2)当点C与点A重合时,求a的值;
(3)点C移动多少秒时,等边△CDE的边CE第一次与⊙M相切?
阅读下列材料,然后解答后面的问题.
我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需要求出其正整数解.
例:由2x+3y=12,得,(x、y为正整数)
∴,解得0<x<6.
又为正整数,则
为正整数.
由2与3互质,可知:x为3的倍数,从而x=3,代入.
∴2x+3y=12的正整数解为
问题:
(1)请你写出方程2x+y=5的一组正整数解: ;
(2)若为自然数,则满足条件的x值有 个;
A.2 | B.3 | C.4 | D.5 |
(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?
如图,已知A(﹣4,0),B(0,4),现以A点为位似中心,相似比为9:4,将OB向右侧放大,B点的对应点为C.
(1)求C点坐标及直线BC的解析式;
(2)一抛物线经过B、C两点,且顶点落在x轴正半轴上,求该抛物线的解析式并画出函数图象;
(3)现将直线BC绕B点旋转与抛物线相交与另一点P,请找出抛物线上所有满足到直线AB距离为的点P.
(1)分解因式:;
(2)先化简,再求值:,其中
.